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A general solution is developed which describes the acoustic and dynamic structural
response generated at the junction of two curved plates subject to unilateral fluid
loading. The plates are modelled by two-dimensional thin-shell theory, and the solu-
tion is found by applying the Wiener—Hopf technique to the dual integral equations
for the unknown pressure on the plates. A simple method is presented for evaluating
the Wiener—Hopf split functions in semi-analytic form. The general solution is found
by expressing the pressure transform in terms of a polynomial function whose coef-
ficients are determined by the conditions at the joint. Here we consider welded and
clamped junctions, either of which requires four unknown coefficients to be deter-
mined. Several limiting cases are examined including the practically important ones
where either one or both plates are flat. Various diffraction coefficients associated
with the fluid—structure interaction are studied and numerical predictions are pre-
sented for the magnitudes of the diffracted acoustic and structural waves. Energy
partition among the various wave types is also investigated. It is found that even
the small curvature effects considered here can lead to significant coupling between
flexural and longitudinal structural waves.

Keywords: structural acoustics; Wiener—Hopf technique; acoustic diffraction;
flexural wave; elastic shells

1. Introduction

We consider two curved plates, or shells, loaded by a compressible fluid on one side
and joined together so that their tangent is continuous along the line of contact. Each
shell may have distinct inertial, extensional and flexural characteristics, in addition
to the curvature, which can also be discontinuous at the junction. For simplicity we
limit this study to the two-dimensional configuration of figure 1. Our objective is a
description of the diffraction from the junction, whereby different wave species are
generated and scattered into the fluid and the plates. The types of wave interaction
include conversion from acoustic to flexural, extensional and acoustic, and the reverse
mechanisms. The excitation is an incident structural wave (flexural or longitudinal)
or an acoustic plane wave. This paper presents a systematic analytical procedure for
their investigation, and provides quantitative predictions of the interactions.

The elastic shells are modelled by two-dimensional thin-shell equations which
include explicit coupling between extensional (in-surface) motion and flexural (trans-
verse) motion. Thin-shell theories are well developed and have been used to study the
response of fluid-loaded finite bodies, such as the uniform cylinder and sphere. These
examples allow of solutions via separable coordinates, whereas finite shell structures

Phil. Trans. R. Soc. Lond. A (1998)
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Diffraction by the junction of two curved plates 1423

with discontinuities require brute force numerical treatment. Realistic ocean-going
structures are composed of piecewise homogeneous sections, or plates, joined along
well-defined lines of contact. Individual waves can be identified on large structures,
and the question arises as to how such waves interact with the junctions, and how
they generate further wave types. Very little is known for arbitrarily curved plates
under fluid loading. Two exceptions are the studies by Brazier-Smith (1987) and Nor-
ris & Wickham (1995) who considered flexural wave incidence upon the junction of
two dissimilar flat plates. The present study contains the flat plate case as a limit in
which the coupling between extensional and flexural modes disappears, and only the
flexural waves are coupled to the fluid. This leads to a great deal of simplification,
in principle, since one can immediately disregard extensional effects. Both studies
mentioned presented many useful numerical results and conclusions; in particular,
they compared the sensitivity of the acoustic scattering to the type of edge condi-
tions at the junction. This sensitivity to join conditions was also discussed by Wu
& Zhu (1995a,b) who extended the work of Brazier-Smith (1987) to include mean
flow of the fluid. We restrict attention here to the cases of ‘welded’ and ‘clamped’
contact with zero mean flow, although our methodology is easily generalized to other
contact conditions. Several authors have discussed diffraction from a surface com-
posed of two semi-infinite impedance strips (Clemmow 1953; Heins & Feshbach 1954;
Kay 1959; Senior 1952). This is a further special limiting case of the Brazier-Smith
problem, when both plates have vanishing bending stiffnesses. The plates then have
only inertial reactions, and the diffraction problem is relatively simple. A complete
analysis of this limit is given by Norris & Rebinsky (1995), who also discuss how it
can be used to estimate the acoustic-to-extensional diffraction. Rebinsky & Norris
(1995a) have also extended this study to include acoustic-to-extensional and shear
diffraction.

Unlike the previously mentioned solutions (Brazier-Smith 1987; Senior 1952; etc.),
the junction of two distinctly curved shells presents, in general, a non-separable
geometry for the acoustic wave equation. We circumvent this difficulty by ‘flattening’
the plates, or more precisely, the equations, onto the line tangent at the join. This is
a reasonable procedure as long as the radii of curvature are large in comparison to
the longest wavelength in the problem. Further motivation for the flattening is given
in § 3. This still leaves us with a fairly formidable mixed boundary value problem to
solve because of the coupling between flexural and extensional motion of the curved
plates. The general procedure for attack is to apply Fourier transforms, leading to a
Wiener—Hopf problem in the transform parameter. One of the main contributions of
this paper is that we provide a systematic procedure to deal with high-order coupled
systems of equations which reduce to Wiener—Hopf form. In fact, as we show in
§5, the formal solution is easily found, but the hard work lies in applying the edge
conditions. We give a general method for finding the relevant Wiener-Hopf split
functions, which again is sufficiently general to cope with far more sophisticated
shell theories. Explicit asymptotic forms are obtained for the split functions, which
can then be used to reduce the edge conditions to a system of linear equations.

The presentation proceeds in the following sequence, starting with the theory for
fluid-loaded curved plates in §2. Then, in §3, we apply a ‘flattening’ approximation
to yield a well-defined boundary value problem for a fluid half-space with mixed
boundary conditions on a line. Some dispersion functions and reflection coefficients
are defined in §4, after which the formal solution to the boundary value problem

Phil. Trans. R. Soc. Lond. A (1998)
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1424 A. N. Norris, D. A. Rebinsky and G. R. Wickham

is easily derived and stated in §5. Two major hurdles must be surmounted on the
way to the solution: first an analytic factorization of the quotient of the dispersion
functions must be obtained, and then the join conditions must be satisfied. The
former is dealt with in detail in Appendix A, and the join conditions are discussed
in §6. Satisfaction of these conditions uniquely determines the form of the unknown
function in the general solution, hence completing the problem. Several limiting cases
are discussed in § 7, especially the degenerate limiting situations of one plate flat and
of both plates flat. In §8, we discuss and illustrate the various wave diffraction
coefficients along with an examination of energy partition and conservation.

2. General theory

The curved plates of figure 1 may have different densities, elastic properties, thick-
nesses and curvatures, but they are joined such that the tangent to the surface is
continuous across the join. The behaviour of each plate may be described by the
dynamic equations for a two-dimensional shell. Let v and w be the in-surface and
normal (into the fluid) displacements, and p the total acoustic pressure in the fluid.
We consider time-harmonic motion, with e~*“* understood but suppressed. The shell
equations of motion are

T, +mw?v = 0, (2.1a)
2

% + Bw,gs5s —mw w = —p, on S, (2.1b)

where s is the arc-length and the pressure p is evaluated at the shell S. The shell
parameters, b, m, B and C, are constant on each shell, where b is the radius of
curvature, m the mass per unit area, B the bending stiffness and C is the exten-
sional stiffness. The latter enters into the constitutive relation for 7, the tensile or
longitudinal stress in the plate:

7= C(v,s +w/b). (2.2)
The quantities m, B and C may be related to the intrinsic plate properties; thus,
m = ph, B = Eh3/12(1 — v?), and C = Eh/(1 — v?), where h, p, E and v are
the thickness, density, Young’s modulus and Poisson ratio, respectively. The shell

equations (2.1) are supplemented by the equation of kinematic continuity between
the plate and fluid,

0
prww = 8—2, on S, (2.3)
and the Helmholtz equation in the fluid region V%,
Vi +kip=0, in Vi (2.4)

Here, p is the fluid density and n is the normal to the surface into the fluid, ks = w/cs
is the acoustic wave number and ¢ is the fluid sound speed.

We now reduce the three equations on the surface S, given by equations (2.1) and
(2.3), to a single boundary condition. First, define the flexural and longitudinal wave
numbers, x and k, and the impedance length, a, by

(2.5)

Phil. Trans. R. Soc. Lond. A (1998)
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Diffraction by the junction of two curved plates 1425
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Figure 1. Geometry of the two curved plate structure.

The impedance length is related to the null frequency introduced by Crighton et
al. (1992), defined as the frequency at which kfa = 1. The null frequency serves
as a useful frequency threshold distinguishing the transition from a low-frequency
pressure-release regime, to higher frequencies where the plate acts in a more rigid
manner. Differentiate the in-surface equation (2.1 a) and use (2.2) to eliminate v, so
that the equilibrium condition for in-surface forces becomes

2

Tsss +hP T = m;;d w- (2.6)
The in-surface displacement, now considered as a secondary variable, is
v=—(mw?) 1, (2.7)
Next, eliminate 7 from (2.1b) by operating on the equation with (92 + k?), yielding
2
WZ; w4 (02 + k%) (Bw, ssss —mw*)w + (02 + k*)p =0, on S. (2.8)

Using (2.3) and the definitions (2.5) reduces the boundary condition to a single
equation for the pressure:

Lp=0, onldS, (2.9)
where the boundary operator is
L= 0?4k +a|[(k10 — 1)(0? + k%) + b 2]0,. (2.10)

Each shell is therefore characterized by the lengths a and b, and the wave numbers
k and k, while the fluid is characterized by its wave number k¢. One could introduce
non-dimensional parameters relative to one of these lengths, preferably &, L but we
choose to maintain the parameters as dimensional. The following non-dimensional
parameters for each shell will arise in the sequel where they are explained in more
detail: the curvature/flatness relative to the fluid wavelength given by k¢b > 1, the
ring frequency, which is the frequency defined by kb = 1, the coincidence frequency,
defined by k¢ = k, and the previously defined null frequency, at which kfa = 1.
Of these various non-dimensional frequencies we assume that k¢b is large, while the
remaining parameters can be of any size.

3. Statement of the diffraction problem

A two-dimensional section of a curved shell is shown in figure 1, with fluid above
the shell and occupying the half-space y > 0. The surface of the shell is described

Phil. Trans. R. Soc. Lond. A (1998)
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1426 A. N. Norris, D. A. Rebinsky and G. R. Wickham

locally by y + 22 /2b ~ 0 near the origin, and the arc length is s = z + 23 /66 + .. .|
or alternatively, z = s — s3/6b? + .. .. Derivatives along the surface may be replaced
by derivatives along the tangent z-direction using 95 = (1 —22/2b? +...)d,. Similar
approximations imply 9, = (1—2%/2b?+...)9,+ (z/b+...)9d,. We now assume that
b far exceeds the fluid wavelength, or equivalently, that e = (ktb)~! is asymptotically
small, ¢ < 1. Consider a neighbourhood B of the origin in which k¢z = O(e=*), where
0< A< % Within B we have z/b = O(6), where § = ¢!=*, and hence the partial
derivatives 95 and 9,, can be asymptotically approximated as 95 = (1+0(62))d, and
dn = 0,+0(6). The boundary operator of equation (2.10) becomes £ = (1+0())L,
where £ is the same as £ but with the tangential and normal derivatives replaced with
2- and y-derivatives. Furthermore, to within the same asymptotic approximation, the
operator can be defined on y = 0 in the region . The same arguments generalize to
the case of the two shells joined at x = 0. Thus, we let

€ = max , 3.1
(kfbl,z) (3.1)

and again it is explicitly assumed that € < 1. The boundary operators approximate
in the same way within the region B, and the continuity conditions for slope, bending
moment, etc., approximate accordingly. This local approximation procedure, which
is based upon the assumption that shell curvature is much less than the fluid wave
number, may be called a shell-flattening approximation. It does not, however, reduce
the equations to those of a flat plate under fluid loading, because we still retain the
curvature term 1/b? in the ‘fattened’ operator £. This term, which admittedly is
small, is the only mechanism by which in-surface longitudinal waves can be excited
in the shell or radiate into the fluid. Therefore, it is important to retain this term in
the equations in order to obtain a quantitative prediction for the mode conversions
to and from such membrane waves.

Finally, we note that incident wave fields may be locally approximated in the
same manner, in that their values on S can be replaced by their equivalent values
on the tangent plane. The relative error is of order e!=2* « 1 for a plane acoustic
wave incident from the fluid with spatial dependence of the form el¥t(# cosfo—ysinto)
where 6 is the direction of propagation. This can be seen by expanding the y-phase
dependence. Similarly, we can approximate an incident plate wave with dependence
like e** on S. Assuming that the wave number is of the same order as the fluid
wave number, which is certainly true of (longitudinal membrane) waves, then a sim-
ilar analysis for the y-dependence implies that the relative error in the flattening
approximation is again of order e' =2},

The diffraction boundary value problem defined on the joined, curved surface S can
therefore be mapped onto an equivalent problem on the tangent plane, as long as the
preceding asymptotic reasoning is valid. We assume this to be so for the remainder
of the paper, in which case the ‘flattened’ boundary operator will be denoted by L,
dropping the overbar. In summary, we need to solve the Helmholtz equation (2.4) in
the fluid, y > 0, subject to the boundary conditions

Lip=0, y=0, z<0,
Lop=0, y=0, x>0, (3.2)
where
L= (024 k) +al(n %08 — (@2 + kD) + 5720, = 1,2 (33)

Phil. Trans. R. Soc. Lond. A (1998)
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Diffraction by the junction of two curved plates 1427

Im &

== Re €

Figure 2. The complex &-plane, the branch cuts for (€), and the shaded region S = H* N'H ™.
Note that HT = SUIm¢ > 0and H™ = SUIméE < 0.

We must also satisfy the conditions at the junction z = 0 of the two curved plates.
By definition, the following parameters are continuous across the joint of two plates
in welded contact: w, w 5, BW 4z, BW 422, T and v, corresponding to normal dis-
placement, rotation, bending moment, shear force, longitudinal force and in-plane
displacement. The condition on the in-plane displacement can be expressed in terms
of 7, by using (2.7). If the curved plates are clamped at the junction = 0 then the
normal displacement, rotation and in-plane displacement (w,w ,,v) vanish at each
plate termination.

We will also consider simpler limiting cases of the general equations with fewer
junction conditions. The scattering solutions developed in the remainder of the paper
provide formally exact answers to the problems posed. They do not take further
account of the disparity in the physical parameters, used to ‘flatten’ the boundary
conditions, nor do they take advantage of possible asymptotic approximations in
terms of small parameters.

4. The dispersion relation and reflection by a homogeneous plate
(a) Dispersion relation

The dispersion function D associated with the boundary condition operator L is
defined by

L7 = eigm_WD(f), (4.1)
where the radical

7€) = (62— kf)'/? (4.2)
is defined as an analytic function in the complex &-plane cut as shown in figure 2 so
that its imaginary part is non-negative and (0) = —iks. Its values along the real

axis are
V(&) = —iy/kf — €2, for [€] < ke

Phil. Trans. R. Soc. Lond. A (1998)
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1428 A. N. Norris, D. A. Rebinsky and G. R. Wickham

and

v(&) =1/& — k2, for €| > k.

We have selected this branch for « so that Fourier superpositions of solutions of the
form used in (4.1) are outgoing at infinity. Note also that, for later convenience, we
have given k¢ a small positive imaginary part, i.e. ky = |k|e', 0 < ¢ < 1. We shall
further assume that D(§) # 0, € € HY N'H~, where H* are upper and lower halves
of the complex &-plane as shown in figure 2.

The analysis of this paper applies in general to any boundary condition of the form
(3.2) with associated dispersion function

D(&) = U(&) —=v(OV(E)- (4.3)

The functions U and V are polynomials in £2 with real-valued coefficients, and hence
have reflection symmetry in the origin of the complex &-plane, i.e. U(=§) = U(§)
and V(—=&) = V(€). For the problem at hand,

UE) =k~ €2, V(€)=U()V(E) +a/b?, (4.4)
where
V() = a(v™e* — ). (4.5)

Note that U and V' are not necessarily irreducible, in the sense that they possess
no common polynomial factors. However, U(§) is a common factor in the important
special case of a flat plate, i.e. when 1/b = 0.

The associated function D(€) is defined by

Lelér+7y — ei§x+~/yl~)(§)’ (4.6)
and hence
D(&) = U(&) +1(V(©). (4.7)

Thus, D is defined for outgoing wave solutions, and D for ingoing solutions.

(b) Reflection coefficients

Now suppose a plane wave with incident z-component of slowness &, impinges on
a homogeneous boundary y = 0 where the acoustic pressure satisfies either of (3.2)
for all x, then the total field consisting of incident plus reflected waves is

p(O) (x7y) — eléoz+7(60)y + R(&))eiﬁofb—v(fo)y’ (4.8)
where the reflection coefficient
_ D
=D
U(§) +1EV(E)
= - . 4.
U OV 9
Alternatively, we may write this as
R(£) = —exp[2tanh ™ (yV/U)]. (4.10)

Phil. Trans. R. Soc. Lond. A (1998)
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Diffraction by the junction of two curved plates 1429

Thus, R(—¢) = R(§) is complex valued and of unit magnitude for —k¢ < £ < kg, and
R is real for ¢ real and €2 > k?. If the degree of vV equals or exceeds that of U,
which is true for the problem under consideration, then R(f+o00) = 1. Combined with
R(+£k¢) = —1, this means that there is at least one pair of roots for R(£) = 0 located
on the real axis with || > k¢. There may also exist poles of R on the real axis such
that || > k¢, which are associated with fluid-loaded shell waves, i.e. where D(§) = 0,
and these are discussed below. The reflection coefficient for a plane acoustic wave
incident at angle 6 from the surface is

R(0) = R(k¢ cosb), (4.11)

and hence |R(#)| = 1 for real 6.
The reflection coefficients, R1(§) and Rz(&), of the individual plates are generally
distinct, but they coincide for certain values of the incident wave number. Note that

2~y P*

Rl—R2:E>

(4.12)

where P* is the polynomial

P(€) = Ur(§)Va(§) — U2(§HVa(§)- (4.13)

Hence, if £ is a root of P*(§) = 0, while D1(§)D2(§) # 0, then R1(§) = R2(&),
and both plates reflect equally at such values. We will see that the roots of P* play
a central role in the general solution. Further insight into the physical meaning of
these roots can be gained from Appendix C, which discusses a ‘sandwich’ structure
composed of two plates separated by a fluid layer.

If one of the plates is flat, plate 1 say, then £ = k is a simultaneous zero of P*(€)
and D1 (), and R1(§) # R2(&) in this case. In fact, the flat plate reflection coefficient
is independent of the extensional properties, namely

LoD
R(§) = — + 7‘1, flat plate. (4.14)
11—~V

(¢) Shell waves
Real roots (if any) of the shell dispersion relation
D(£) =0 (4.15)

correspond to surface wave solutions that can propagate in the absence of any exter-
nal forcing. There are also complex roots, corresponding to ‘leaky’ waves (Crighton
1979). Two classes of shell waves may be usefully distinguished, flexural and longi-
tudinal, each of which is unambiguously defined on a flat plate in vacuo. They may
be characterized essentially as waves with shell motions which are predominantly
transverse, or in-surface, respectively. In the limiting case of the flat plate (1/b — 0),
the root structure simplifies, because D then has the form D = (1 —yV)U, where
V is defined in (4.5). The dispersion relation for flexural waves on a fluid-loaded flat
plate is 1 — vV = 0, and its root structure has been the subject of much discussion
in the literature (see, for example, Crighton 1979). This dispersion relation admits
of a real root for subsonic flexural waves, which by their nature induce no radiation
in the far-field. Generally, we can expect that the flexural roots will be only slightly
perturbed from their flat plate values in the presence of shell curvature.

Phil. Trans. R. Soc. Lond. A (1998)
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1430 A. N. Norris, D. A. Rebinsky and G. R. Wickham

The other possible roots for the flat plate come from U(£) = 0, or £ = +k, which
give extensional or longitudinal waves. In the absence of curvature these waves have
no transverse motion (w = 0) and are not coupled to the fluid. Non-zero curva-
ture causes the roots to be displaced slightly from the real axis, and they can be
asymptotically approximated by using the assumption that e of (3.1) is small. The
procedure is described by Norris & Rebinsky (1995). The extensional waves are then
weakly coupled to the fluid, and are leaky because they are supersonic relative to
the acoustic sound speed.

In this paper we will be concerned mainly with frequencies below coincidence.
The flexural waves are subsonic and non-radiating but the longitudinal waves are
supersonic and leaky, although the ‘leakiness’ vanishes if the plate is flat. Crighton
(1979) has demonstrated quite convincingly that leaky waves have no relevance to
the radiated ‘far-field’ on a flat plate. However, if the waves are weakly leaky, then
they may have a large but finite domain of influence (Crighton 1979). This dis-
tinction is crucial in dealing with leaky longitudinal waves, because they are by
definition only weakly leaky. It can be shown that the loss tangent (ratio of imag-
inary to real parts of &) is of order € (see Norris & Rebinsky 1994). At the same
time, the structure being considered usually has a global dimension of the order b, so
that the leaky wave can make many circumnavigations before the radiation damp-
ing has significantly drained its energy. Thus, the acoustic far-field ‘sees’ the leaky
wave from the entire structure, or more precisely, from those parts of the structure
it reaches. At the same time, the concept of ‘far-field’ is quite different here than
in the strictly two-dimensional setting considered by Crighton (1979). We assume
the junctions are parts of compact three-dimensional structures, and the far-field
is defined in the sense appropriate to this situation. Bearing these distinctions in
mind, it should be clear that the leaky longitudinal waves are of utmost significance
as far as the far-field is concerned. We note that the poles giving the leaky longi-
tudinal waves lie on the unphysical Riemann sheet, which is discussed further in
Appendix A.

5. Formal solution of the diffraction problem
(a) Incident and scattered fields

We now consider the scattering problem defined in §3. First, we introduce the
scattered field p'®) according to

p(x,y) :p(0)<x7y) —l—p(s)(az,y), (51)

where p(©) is an incident wave solution with horizontal wave number &, and satisfying
the boundary condition on z < 0. Thus, p(®) may be an incident plane acoustic wave
with & = k¢ cos g, where 0 < 0y < %77 so that &y lies in the upper half-plane, and
the amplitude of p(®) at the origin is then (1 + R1(6p)) times the incident pressure
there. Or, it could be an incident-free shell wave, in which case & is a root of the
dispersion equation (4.15) with Re &y > 0. The flat plate presents a special case, for,
if plate 1 is flat and the incident wave is an extensional (longitudinal) wave, then
the associated incident pressure is zero. We denote this as an FPL wave (flat plate,
longitudinal) and say more about it later. Thus, the incident field is assumed to be
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Diffraction by the junction of two curved plates 1431

of the form

. [0y Ry (&)e 7 (&0)¥]  acoustic wave,
pO(z,y) = eléom { =10y, shell wave, (5.2)
0, FPL wave.

We assume for FPL incidence that the incident stress, 7(%) (), defined by analogy
with (5.1), is of the form

7O(z) =% ¢ =k, FPL wave. (5.3)

Without loss of generality, we may suppose that &y lies in the upper half, H*, of
the complex &-plane described in figure 2. One could use spectral superposition to
consider more complicated incident wave fields, but we restrict attention in this paper
to plane acoustic and shell waves.

The boundary conditions (3.2) may then be written as

Lip®) =0, z<0,
x>0

5.4
Lop®) = —Lop@), (5-4)

We now introduce an outgoing Fourier superposition of plane waves for p(® in the
form

, L[ eas
Pe) =5 [ RO, (5.5)
This will satisfy (5.4) if the dual equations
/ D1 (6)p(€)e*®dé =0, =<0, (5.6a)
— / Do (€)p(£)e!™ d€ = —Da (&) Age™™*”, x>0, (5.6b)
hold with
R1(&) — Ra(&o), acoustic wave,
Ag =< 1, shell wave, (5.7)

(k3 — ki)/[b2D2(k1)], FPL wave,

where the FPL result follows from equations (2.1) and (5.3). Note that Ay = 0 for
plane wave incidence if & is a root of P* = 0, (but not a root of D1 Dy = 0, cf.
equation (4.13)), in which case the scattered pressure is identically zero. Ay also
vanishes for FPL incidence if ky = k1, even when plate 2 is not flat (1/by # 0). We
call this highly degenerate but physically significant configuration FPL*. There is
still a scattered pressure in this case, and it turns out that the analysis is essentially
the same whether Ay vanishes or not. We discuss the FPL* case in more detail later
in §7.

(b) General solution

It is evident that (5.6 a) is satisfied by writing

p(§) = F(£)/D1(8), (5-8)
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1432 A. N. Norris, D. A. Rebinsky and G. R. Wickham

where F'~ is any function analytic in H~ and

F7(§)=0(""), £€—o0, E€H . (5.9)
Substituting this ansatz into the second of (5.6) yields
i > D2(£) — iz _ iox
2 | Dt @ de = —Da() do”, w0, (5.10)

Again by inspection, a particular solution of this equation is

iAgD2(&) K (§)
§—& K+(&)’

F(e) = (5.11)

where

D (&) _ K=(§)
Dy(§)  KT(§)

That is, K*(£) are particular Wiener-Hopf factors of the quotient of the two disper-
sion functions that are analytic in the half-planes H* of figure 2.

A little reflection on the preceding argument shows that further solutions of the
dual equations may be generated according to the prescription

1A(§)D2(80) K~ (§)
£E—& K* (&)

where A(£) is now a polynomial of degree no greater than ¢ (say) where ¢ is chosen
so that (5.9) is satisfied in the whole complex plane and

K(§) =

(5.12)

F(§) = (5.13)

A(&o) = Ao- (5.14)
The general solution for the pressure transform is

1A(6) G(&)

p(§) = ; 5.15
O —a e (>49)
where G is an analytical generalization of the dispersion functions,
D D
(e = 228 _ Dilo) (5.16)

RSGCEESG)
Thus we have provided a formal construction of a ¢-parameter family of outgoing
scattered fields satisfying Helmholtz’s equation and the shell boundary conditions
(3.2). It remains to satisfy the conditions at the junction of the two plates. Evidently,
the value of ¢ depends only on the size of the factors K* as £ — oo, and we would
expect that the physical constraints at the join associated with a particular form
for D(¢) will also number ¢ to enable a unique construction. In §6 we shall show
that this is indeed the case, after we provide an analytic construction for K*(¢) in
Appendix A. But first, we discuss the general form of the solutions for the other
physical quantities of interest.
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Diffraction by the junction of two curved plates 1433

(¢) Displacement and stress solutions

The pressure, the transverse and in-plane deflections, and the membrane stress
may all be expressed in terms of two fundamental potentials po(z), and wo(z),

pla,y) = pO(z,y) — A (—i;;> po(,y), (5.17a)

prww(z) = ag;o) (2,0)— A (—iiﬁ) wo(), (5.17b)

@ = O (2,0)—a <;§; _ 1) agj)@,o) A (—ii{j) o(x), (5.17¢)

v(z) = —ﬁ%, (5.17d)
where

po(a,y) = 2% / O:o Cé((f;))e;igoy de, (5.180)

wo(w) = —ﬁ _O; () (é(f;)) gei_f; de, (5.18b)

and po(z,0) is denoted by po(x). The function 7(x) depends upon wy(z), po(x) and
the plate parameters,

4
(o) = —pola) ~ o (g 4z~ 1) wnlo). (519)

As is usual, the material parameters take the appropriate values either side of the
join at * = 0. These relations follow from equations (5.1), (5.5), (5.15), (2.1b),
(2.3) and (2.7). At first, it may appear to be a simple matter to formally apply
the junction continuity conditions by using the above expressions for p, w, 7 and v.
However, (5.18b) will in general have weak singularities at x = 0 and it is therefore
necessary to proceed with caution. Our approach is straightforward in that we will
first derive alternative expressions for po(z) and wg(x) so that it is easy to find their
power series as # — 0% and then obtain an algebraic system of equations for the
undetermined coefficients in A by substituting these expansions into (5.17) and the
junction conditions.

(d) Diffraction coefficients

The scattered pressure simplifies at distances far from the junction in units of the
longest wavelength in the problem. A far-field approximation may be obtained by
the usual methods of first shifting the contour of integration from the real axis to
the path of steepest descents. The saddle point then yields the scattered pressure in
the fluid, which depends upon a diffraction coefficient C'(8) defined such that

2 . .
p® = C(O)) e 1M kyr — 00, 0<O <, (5.20)
7Tk7f7'

C(8) = ke sin 6 p(ke cos6). (5.21)

where
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1434 A. N. Norris, D. A. Rebinsky and G. R. Wickham

If the incident wave is an acoustic wave with angle of incidence 6y such that & =
k¢ cos g, the diffraction coefficient can be considered a function of both angles, i.e.
C(6,00). It follows from (5.7), (5.15) and (5.21) as

1 . G() A€ &)
where & = kf cosf and we have rewritten A() as A(£,&p) to remind us that it is a
function of both the incident and scattered directions.

When the observation angle 6 is close to 8 = 0, the deformation onto the path of
steepest descents will capture two poles which correspond to the subsonic flexural
wave and supersonic longitudinal wave travelling to the right in x > 0. The flexural
pole occurs at the positive real zero of Dy(&). The longitudinal pole is actually a
root of D2(&) with real positive part less than k¢ and a small positive imaginary
part. Note that the longitudinal wave has Re~ < 0, but for some values of x and y
the phase i€x — vy represents an outgoing wave. In order to capture the longitudinal
pole, the contour must be deformed onto the other Riemann sheet represented by
Re~ < 0. Whether or not the longitudinal pole is captured depends upon the position
of the point of stationary phase. A discussion of similar contour manipulations can
be found in the works of Crighton (1971) and Rebinsky & Harris (1992). Similarly,
when 0 is close to § = 7, the deformation of the contour captures poles at the zeros
of D1(£) and D;(§) corresponding to the negative counterparts of those for z > 0.
For example, when the incident field is a subsonic flexural wave advancing from the
left, the residues at these poles are the reflected and transmitted waves, respectively.
Using equations (5.15) and (5.16) with & = ¢l (the subscript ‘s’ indicating the
subsonic flexural root), we thus find the left- and right-going waves are

(5.22)

p1 = Raexe =0 EY 4 R CH(—0, — 0)e i T (€Y, (5.23a)
P2 = Thexe'® =V ENY L Ty H (05 — 0)eiSn e=1(E )y, (5.23b)

where §§1), O and §§2), fr(f ) are the wave numbers of the subsonic flexural and mem-
brane waves on the right- and left-hand plates, respectively. Also, H is the Heaviside
function, 6 = tan~!(y/x), and 61 o ~ sin~* (k1 2/k¢) which are the longitudinal wave
critical angles. The reflection and transmission coefficients for the subsonic flexural
waves are

_AcgNeE)) L AE)GE)EF(EY)

= , ex = (5.24)
26Dy T @ - ) py(el?)

Rﬁex

respectively. Note that the polynomial A(€) is also a function of the incident direc-
tion, given in this example as 531 , in addition to the scattered direction. We can
also determine those coefficients describing the diffracted longitudinal waves, both
reflected and transmitted,

B o ACE)GEY) T~ AEHGEN K E®)
ong = (1 1 1 0y’ ong = 1 2 2)\ :

(&7 + e K+ (e D (6) (6" — &) Dy(ed)
respectively. Note that the diffraction coefficients of (5.24) and (5.25) are in terms
of the surface pressure, not the displacement.
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Diffraction by the junction of two curved plates 1435

(e) Consequences of reciprocity

Acoustical reciprocity requires that the diffraction should be the same under the
interchange of the source and receiver directions, or

C(0,0p) = C(m — O, — 0). (5.26)
This implies, using (5.22),
A(€,0)7(§)G(60)/G (&) = A(=Eo, —€)7(€0)G(=§)/G (&), (5.27)

where we have written A(£) as A(&, &) to remind us that it is a function of both
incident and scattered directions. Now,

GE)G(—€) = D1 (€)Dafe) = L)

Ri(§) — Ra(8)’
from (4.12), (5.16) and (A 1), while the denominator in the last expression simplifies
further for acoustic wave incidence as Ri(§) — Ra(§) = A(€,€), from (5.7). Using
(5.27) and (5.28) and the identity A(£,§) = A(—¢&,—&), we see that reciprocity
implies the connection

A& ) A(=E,60) P (&0) = A(&o, §0) A0, §) P (£)- (5.29)

The function A must satisfy this relation for arbitrary plane wave incidence.

(5.28)

(f) Energy conservation

The balance of wave power, or flux, can be used as a check on the solution of the
fluid-curved plate system. The energy conservation identity for flat plates has been
previously studied by Crighton & Innes (1984) and by Norris & Wickham (1995).
Here we require the energy flux (the structural intensity) for a curved plate under
unilateral fluid loading. A general theorem on energy for an inhomogeneous elastic
shell with fluid loading was derived by Pierce (1993), with the final form given by

o€

e + D I% = —pw,, (5.30)

where £ is the total energy and I¢ is the structural intensity. Following Crighton &
Innes (1984), we take the time average of (5.30) to obtain

<Il(x1) - Il(m2)> = </ pw ¢ da;>, (5.31)
S
with
I' = —TV 4 — B(W 30W gt — W ggzWt), (5.32)

being the remaining component of the structural intensity and S the surface in the
fluid joining the points 1 and zs on the plate. The time average in equation (5.31)
is defined by

(fi(z1,t) fo(z1,t)) = § Re[f1(x1) f5 (x1)], (5.33)

where * denotes complex conjugation. The time average of the structural intensity
I' is given by

(I') = L Re[~iwB(w 0 — W w 4¢) + iwT*v]. (5.34)
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1436 A. N. Norris, D. A. Rebinsky and G. R. Wickham

In addition to the structural intensity one must also determine the rate of working
of the pressure, which is given by

(I) = ;Re[/ooop<lp1w gi) dy]. (5.35)

The sum of these contributions gives the total energy flux F associated with the
structural wave.
For the longitudinal wave this is simply just the energy flux in the curved plate,

T _
Fions = L) 2 °' e=2bnlal,

L(ém) = Re(ifm)(l +2Re(60,)°|U (€m)P0%7Y), (5.36)

where 7y is the incident stress amplitude, &, is the longitudinal wave number in
the curved plate and 6, = Im¢&,,. Note that at x = 400 the longitudinal flux in
the curved plate is zero. Here we will assume that this expression is approximately
valid at x = 0 when using far-field diffraction coefficients. The longitudinal pressure
coefficients (5.25) can be converted to stress-based coeflicients by multiplying by the
factor b(1 +~V):

RlTOHg =b [1 + W(ES))Vl(ES))]Rlonga (537 a)
Tiong = b2[1 + (€2 V()] Tions, (5.37b)

where v has been negated to account for the longitudinal poles being on the lower
sheet (Rey < 0) of the complex &-plane. The energy flux for the longitudinal waves
can be obtained in terms of pressure by using equations (2.3) and (2.6) to relate the
stress to the pressure. Then

70> a [yl Ipol?
2mw b2 U (ém) |2 2psw”

The flux for a flat plate is obtained from equation (5.36) by letting b — oo and
noting that in this limit U(&,) — 1/b%

The subsonic flexural wave contains energy in both the curved plate and the fluid.
After some algebraic manipulations using equations (5.34) and (5.35), the flux is

(5.38)

2
Fhiex = F(fs)g;of’wa
_ DN (&) & 1 €
O e R

where &, is the subsonic flexural wave number. Once again the expression for a flat
plate follows by letting b — oo.

The flux of acoustic energy diffracted from the junction into the fluid follows from
(5.20) as

1 " 2 [
lim / 1p®) (r,0)|?r d§ = / |C(6)]? do. (5.40)
0 0

T—00 PfCe TPrwW

Now consider an incident flexural wave with unit flux, then equations (5.36)—(5.40)
may be combined to provide a statement of energy conservation. We will find that
subsonic flexural waves provide the only means of significant energy flow away from
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Diffraction by the junction of two curved plates 1437

the junction, other than acoustic diffraction loss (cf. §8). Note that the membrane
(longitudinal) waves are leaky so that at large distances from the junction their
energy flux is zero. Applying the above energy flux identities at the junction gives

F@ () 1 LW

1= |Raex|” + exl? + =22 R
B F(l)(ggl))| fex| a; F(l)(fgl))| fone |
1 L3 14T
(1)|T1£ng|2+1/ IC(0)] 0. (5.41)
a2 FO) (&) FOED) ™ Jo

The five terms on the right-hand side are each positive and less than unity, and
correspond to the fractional energy reflected as flexural on plate 1, transmitted as
flexural on plate 2, reflected as longitudinal on plate 1, transmitted as longitudinal on
plate 2 and acoustically radiated into the fluid. A similar equation can be obtained
for longitudinal wave incidence.

6. Satisfying the join conditions

We now give a general systematic procedure for evaluating A(§) in the formal solu-
tion (5.15) so that various prescribed conditions at the junctions of the plates may
be determined. We shall proceed in the context of the problem posed in §3, but
the reader should notice that the analysis is valid for a wide class of plate models
and physical constraints at the join. Application of the junction conditions requires
knowledge of the behaviour of the potentials po(z) and wg(z) in the neighbourhood
of the join, x = 0. Our first order of business is to obtain analytic expansions of
these quantities; actually, as we will see, Taylor series in z. We can then apply the
conditions in a straightforward manner.

(a) Alternative integral forms for wo and pg

The potentials are both in the form of Fourier transforms which can be separated
into two distinct transforms each of which vanishes for either x > 0 or z < 0. Thus,

o) un(e)} = 5 [ () (@) e
1

" 2ni

| twe@.ateies e eso (6.1)

where 1'[)8' , Wy , are the analytic partitions of @y, defined by

wo(§) = g (&) + g (6), (6.2)

such that wg (€) is analytic in H* and w, () is analytic in H~. Analytic partitions
of pp(§) are defined in the same manner. The transforms wy and py, as defined in
equation (5.18), may be rewritten by noting that

1(€)/G(€) = [K™(§)U2(8) — KT (QUL(E)]/P(8), (6.3a)
1/G(&) = [K(E)Va(§) = KT (VA (9]/ P (&), (6.30)
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1438 A. N. Norris, D. A. Rebinsky and G. R. Wickham

which are easily obtained by eliminating v between the two equations (5.16). Thus,

U (©KHE) —~ U)K~ (0
C-oP©

: Va(©K(6) ~ Va(E)K~(©

PO =GO e

where the denominator in these integrands is the polynomial P* defined in equa-
tion (4.13). The general form of the polynomial is

wo(§) = G(&o)

(6.4a)

(6.4b)

N*/2
P& =p; [ (€=, (6.5)
n=1

say, where the zeros +C,,n = 1,2,...,2N* are necessarily outside H+ N H~, and
we define them such that (,,n = 1, 2, e 1N* are in H*. For the problem under
consideration

N \

as aq
N*=38 d Py= - —. 6.6
an p (6.6)

The partition functions can be found quite easily from (6.4) because, apart from
the split function K™ and K, the only singularities arise from the simple poles
at £ = & and the roots of P* = 0. By adding and subtracting poles at the same
points with suitable residues, we can arrive at explicit formulae for the partitioned
functions. They therefore become

RPN Ui(§) K" (&)  U2(K ()
o (6) = G(SO){ (€= &)P*(&) (E—&)P*(¢)

+Z{f Cnulzn £o>+<£+<n>l<bz_—"<n—ao>]}’ (67a)

UK Ui(o)K™ (&)
§—&)P* (&)  (€—&)P*(%)

4

Ui U
B T; {(f "G &) ET ) (Ga 60)] } (6.7b)

g (€) = G(fo){(

where

U; (O K*(8)
The functions ﬁar and p, then follow by simply replacing U; with =V}, j = 1,2, in
equations (6.7) and (6.8). The residues u;, and u5, can be related to one another
by noting, from equations (4.13), (5.16) and (6.3), that

Ur W1

ujt = residue of [ (6.8)

7S aE==C (6.9)
This identity, together with the fact that P* is an even function, implies
Ugy, =~y /[K () KT (G, (6.10)

for each n.
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Diffraction by the junction of two curved plates 1439

(b) Behaviour of wy and py near the join

In practice, to satisfy the join conditions, we only need the asymptotic forms for
po and wqg and their derivatives near x = 0, and these follow immediately from
the power series expansion of the Fourier transform about the point at infinity. For
instance, let f signify either of these functions, and suppose that the partitions of
f(&) are of the form

M
FEO =% Fh &+ 06 M loge), (6.11)
m=1
for some integer M > 1. Then it can be shown that
o i (i)"
f@)=>" 7 - +0(zMlog |z]), xZ0. (6.12)
m=0

The only terms containing logarithmic singularities in the expressions (6.7) for
u?gt are those with K*(¢), respectively. Referring to the asymptotic results in equa-
tions (B6) and (B7), and to equations (6.5)—(6.7), the leading-order singular term
at infinity in the expansion of the Fourier transforms for wg in (6.1) is of order
£ 12]log €. On inversion, the latter yields a term of order z'!log |z|. Similarly, the
transforms for py have a leading-order singularity of order ¢ ~®log¢, yielding a term
of order z”log|z|. The leading-order singularities for the stress 7(z) and the in-
plane displacement v(z) depend upon the function 74 (z) of equation (5.19), with the
associated transform (cf. (4.5))

7(€) = —po(€) = V(€)io(é)- (6.13)
Hence, for example, the transform required to evaluate 7o(x) for x < 0 is
70(&) = —{UL(&)pg (&) + [VA(§) — ar/bi]g (€)}/UL(8), (6.14)

which, from (6.7) and the corresponding equation for ;155“ , has a singularity of the
form ¢~1*1og¢. The leading-order singularity of 7o(x) is therefore 13 log |x|.

The transforms u?oi and ﬁoi may be put into the form (6.11), where, based upon
the above discussion, M = 7 and 11, respectively. The details of the splitting can be
found in Appendix B. Having expanded the transforms about the point at infinity
it is a simple matter to invert term by term by using equation (6.12), which yields
explicit power series for wg(z) and po(z) near the origin, namely

11 .
_ + (15”)” 11 <
wo(z) _nEZOAnT + O(x *logz|), =30, (6.15a)
D ()"
_ + 7
po(z) = nizown T O(z"loglz|), =30, (6.15b)

and, again, the coefficients are listed explicitly in Appendix B. We note that /\j+ = A
for j = 0-5, and hence wy(x) and its first five derivatives are continuous at = = 0.
Similarly, ¢¢ = 1 and ¥ = 9|, implying that po(z) and dpo(z)/dz are continuous
at x = 0.
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1440 A. N. Norris, D. A. Rebinsky and G. R. Wickham

(¢) Determination of A(&)
Letting

q
§ =) Ant", (6.16)
n=0
we see that equation (5.14) implies the identity
q —
> A&l = Ao (6.17)
n=0

The displacement and pressure near the origin therefore follow from equations (5.17),
(6.15) and (6.17), as

2 ap” - + (iz)" 11
prw w(z) = oy (x,0) — Z A o + O(z" " log|z|), x50, (6.18 a)
n=0 ’
7—q
p(z,0) = p®(,0) Z (z"logz]), =30, (6.18b)
where
ZAk)\k+n (11 -k —n), (6.19a)
Z At JH(T—k —n), (6.19b)

and H indicates the Heaviside step function with H(0) = 1. The stress and velocity
depend upon

d
A (id> ro(x) = I +ialE 4+ 0(2?), 230, (6.20)
x
where
Agt
Iyt =-w -t - a1,2< i A;ﬁ). (6.21)
K12

)

For example, by using (5.17c) the stress can be written as

@) o o (rat o \opl?
b p ($)0> a k4 dpt 1 8y (37)0)

Zri@x Oz log |z|), =0, (6.22)

while the in-surface displacement follows similarly from (2.7).

At this point the maximum value of ¢ in the sum in equation (6.16) can be deter-
mined. (6 18 b) implies that the pressure is singular at the join unless ¢ is chosen to
satisfy ¢ < 6. This can also be seen by examining the expansions of the dispersion
functions and the Wiener—Hopf split functions at infinity. In doing so, K* = O(1) as
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Diffraction by the junction of two curved plates 1441

|¢] — oo from Appendices A and B, and D(§) = O(£7) at infinity from equation (4.3)
so that in order to keep w and p® bounded everywhere ¢ is limited to a value of 6.

All that remains is to determine the unknown coefficients Ay, k = 0,1,...,6 in the
polynomial A. These are found by application of the various edge conditions at the
join located at x = 0. Next we formulate the algebraic system for all the coefficients
in this polynomial. We also note that the procedure may be somewhat complicated
so that we have provided an outline of the solution method as applied to the simpler
case of two joined membranes. This is discussed in Appendix D. For now we continue
with two joined curved plates.

(i) Welded join

The first four edge conditions for continuity of the displacement and rotation,
w, W, and the bending moment and shear force, Bw ,, and Bw 5z, can now be
expressed in terms of AF by using equation (5.17) and (6.18):

AL — Ay =0, (6.23a)
Af — A7 =0, (6.23b)
pAy — Ay =& (n— )p(O)(U 0), (6.23¢)
pAf = Ay =& (n—1)p(0,0), (6.23 d)
where
u= By/B. (6.24)

The remaining two continuity conditions for the in-plane force and in-surface dis-
placement, 7 and v, follow from equations (6.22) and (2.7), as

B — Ty =—(8—1)p(0,0) - [BV2(&) — V1(&)Ip(0,0), (6.25a)
BT — oIy = —&(8 — a)p®(0,0) — &[BV2(40) — avl(&))]pg?)(o, 0), (6.250)

where

a:a2/a1, ﬂ:bg/bl (626)
Equations (6.17), (6.23) and (6.25) constitute a set of seven equations for the
seven unknowns A,, n =0,1,...,6. An explicit linear system of equations for these

unknowns follows from equations (6.19) and (6.21). However, the two kinematic

conditions (6.23 a) and (6.23b) turn out to be trivially satisfied. Thus, as mentioned

previously, )\+ = A, for j = 0-5; therefore, (6.23a) and (6.23b) 1mply, respectively,

that Ag =0 and A5 = 0. Hence, A is actually fourth order (¢ = 4) and there are, in

general, five equations to be satisfied: (6.17), (6.23¢), (6.23d), (6.25a) and (6.25D).
Furthermore, by choosing

4

A(§) = Ao + (€ - &) Z "7 (6.27)

equation (6.17) is satisfied which then reduces the system to four equations to deter-
mine the unknown A,,. These are (6.23¢), (6.23d), (6.25a) and (6.25b), which can
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1442 A. N. Norris, D. A. Rebinsky and G. R. Wickham

be written, by using equations (6.18) and (6.19), as

Fﬂﬁ

Aj(uATy = A) = & — Dl (0,0) — Ao(uAF — Ay), (6.280)
1

<.
Il

4
S0 A (uAE — Agy) = - DPD(0,0) - Ao} = A7), (6.28)
j=1
and
4 3+ -
- - Ad . - ~ Ao -
S a{s[r (S -3)] - [ m( i)
j=1 2

= (8- 1)p2(0,0) + [BV2(&) — Vi(&)]p'Y (0,0)

NSV T
i 3)] -5 en(-3))
= &o(8 — a)p'”(0,0) + &[BVa(é0) — aVi(&o)]p'y)(0,0)

2
-+ Moy - As -
_AO{ﬁ{wl +a2(l-€4 _)\1>] - [’(/)1 +ay <FL4 —/\1 >:|}, (629b)
2 1

where the various combinations of A, 1, and A, ¥, are given by (B11) and (B 13),
respectively.

i“ia‘{

=1

.

(ii) Clamped join

In the instance where the two curved plates are clamped at x = 0, then w, w,
and v all vanish at either plate termination. The out-of-plane conditions (w(40) =0
and w ;(£0) = 0) then follow as

AF — Ay =0, (6.30a)
Af — A7 =0, (6.300)
A5 =p(0,0), (6.30¢)
Af = &p'(0,0), (6.30d)
and the in-plane conditions (v(£0) = 0) are
= —&[p(0,0) + V1(&)p (0, 0)], (6.31a)
I = —=&[Pp(0,0) + Va(&)pl) (0,0)]. (6.31b)

Once again the first two equations of (6.30) are trivially satisfied, reducing ¢ to
4, and (6.17) is also satisfied by choosing the polynomial A to be represented by
(6.27), leaving one with the following system of equations to determine the remaining
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Diffraction by the junction of two curved plates 1443
coefficients of A:
4
> AN =pl(0,0) — AgA{, (6.32a)
j=1
4 ~ ~
> AN =¢&(p—1)pl(0,0) — AgAT, (6.320)
j=1

and, again referring to Appendix B,
4 —
o 4+ 71—
S i v (-5}
j=1 1
- B AT
=6l (0.0) + T2 (@ 0.0] - o 05 +ar (25 -4 )] 6330
1
(- M <
ZAj{zpj —l—a2< _ Aj)}
j=1 2

= 50[p(0)(07 0) + ‘72(50)197(2) (0, 0)] — AO |:1[}1_ + as ()’;i
2

A

- Afﬂ . (6.33D)

7. Limiting cases

Several interesting and physically important special cases deserve discussion. We
consider in succession the following situations: (a) two curved plates with identical
mechanical properties; (b) one flat plate; (¢) the FPL* case; and (d) both plates flat.

(a) Identical plates: change in curvature

The mechanical properties of the plates are the same, a1 = as, k1 = ks, k1 = ka2,
but b; # bs. The main simplification is that the polynomial P* reduces to a quadratic,
with roots +£(; = +k;. Hence, the reflection coefficients R; and Ry coincide at this
wave number, and the diffraction problem for the pressure becomes trivial (p(s) =0)
if & = +kq.

(b) One flat plate

The general set of edge conditions needs to be amended when one or both plates
has zero curvature. Referring to equations (2.1) and (5.17 ¢) it should be clear that
7o should vanish on the flat side of the junction. To be specific, if we let plate 1 be
flat, then it follows from (6.13) that 7o(x) for z < 0 depends upon

(€)= - e )
L K= (§)
G(&)K (=k1) , G(&) [K~ (k1) K (§)
- 2131(/@1 +€) +k1 +0§ 2k ki —¢& | (7.1)
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The scattered stress for x < 0 therefore depends upon the first term on the right-
hand side, because the other is analytic in ™. Noting that |b;| — oo, and p(®) for
x < 0 in equation (5.17a) implies that in order for the stress at the junction to be
finite, we must have

A(—ky) =0. (7.2)

This condition replaces condition (6.25 a), and holds whatever the incident wave type
may be: acoustic, flexural or longitudinal (FPL).

The actual value of the scattered (total minus incident) stress at the junction is
then given by evaluating (5.17 ¢) on the curved side (z = 0+), yielding

7®(0) = =79(0) = ba{p'” (0,0) + V2(£0)p(0,0) + I }. (7.3)

Note that 7(9 = 0 unless the incident excitation is from a FPL wave, in which case
it is given by equation (5.3). In either case, the scattered stress on plate 1 must be
of the form (cf. equation (2.6))

78 (z) = 7O (0)e F®, 2 <0, (7.4)

i.e. the value of the diffracted FPL wave is determined by the stress at the junction.
If the incidence is acoustic or flexural, we have the general result: the amplitude of
the diffracted longitudinal stress wave on a flat plate is precisely the wvalue of the
stress at the junction.

Finally, the v-condition at x = 0 for a welded junction is given by (5.17 ¢), using
the value from (7.4) for the flat side:

i -~
= - [72(0) = k17 (0)] = &[p™ (0,0) + Va(€0)p§(0,0)). (75)

2

After substituting the junction stress and its derivative given by equations (7.3) and
(7.4), one arrives at

ry

i

I +ak Iy =
b2

[r(0) + ka7 (0)]

— (&0 + ak)[p(0,0) + V2(&)p'P(0,0)].  (7.6)

The full set of seven equations required to determine A are (6.17), (6.23), (7.2) and
(7.6). We note that equations (6.23a) and (6.23b) are identically satisfied so that
the order of A is reduced to four. Further simplifications are obtained by choosing
the polynomial A in the following manner:

_ §+ k1 & i ¢ci—1
A= [Aoﬂggo);A]e J &

which leaves us with three remaining conditions to determine the unknown A; with
Jj = 1,2,3. They are (6.23¢), (6.23d) and (7.6). If the joint between the two plates
is clamped, then the remaining three conditions are (6.30¢), (6.30d), and (6.31b),
which applies only for acoustic or flexural incidence. For longitudinal wave incidence
(5.3), the solution for a clamped joint is trivial with the reflected stress being equal
in amplitude to the incident str